updated for version 7.0179

This commit is contained in:
Bram Moolenaar
2006-01-12 23:22:24 +00:00
parent 1cbe5f739d
commit 4770d09abd
68 changed files with 5456 additions and 1904 deletions

View File

@ -1,4 +1,4 @@
*develop.txt* For Vim version 7.0aa. Last change: 2005 Sep 01
*develop.txt* For Vim version 7.0aa. Last change: 2006 Jan 12
VIM REFERENCE MANUAL by Bram Moolenaar
@ -382,8 +382,8 @@ checking engine in Vim, for various reasons:
them separately from Vim. That's mostly not impossible, but a drawback.
- Performance: A few tests showed that it's possible to check spelling on the
fly (while redrawing), just like syntax highlighting. But the mechanisms
used by other code are much slower. Myspell uses a simplistic hashtable,
for example.
used by other code are much slower. Myspell uses a hashtable, for example.
The affix compression that most spell checkers use makes it slower too.
- For using an external program like aspell a communication mechanism would
have to be setup. That's complicated to do in a portable way (Unix-only
would be relatively simple, but that's not good enough). And performance
@ -399,14 +399,88 @@ checking engine in Vim, for various reasons:
another program or library would be acceptable. But the word lists probably
differ, the suggestions may be wrong words.
Spelling suggestions *develop-spell-suggestions*
For making suggestions there are two basic mechanisms:
1. Try changing the bad word a little bit and check for a match with a good
word. Or go through the list of good words, change them a little bit and
check for a match with the bad word. The changes are deleting a character,
inserting a character, swapping two characters, etc.
2. Perform soundfolding on both the bad word and the good words and then find
matches, possibly with a few changes like with the first mechanism.
The first is good for finding typing mistakes. After experimenting with
hashtables and looking at solutions from other spell checkers the conclusion
was that a trie (a kind of tree structure) is ideal for this. Both for
reducing memory use and being able to try sensible changes. For example, when
inserting a character only characters that lead to good words need to be
tried. Other mechanisms (with hashtables) need to try all possible letters at
every position in the word. Also, a hashtable has the requirement that word
boundaries are identified separately, while a trie does not require this.
That makes the mechanism a lot simpler.
Soundfolding is useful when someone knows how the words sounds but doesn't
know how it is spelled. For example, the word "dictionary" might be written
as "daktonerie". The number of changes that the first method would need to
try is very big, it's hard to find the good word that way. After soundfolding
the words become "tktnr" and "tkxnry", these differ by only two letters.
To find words by their soundfolded equivalent (soundalike word) we need a list
of all soundfolded words. A few experiments have been done to find out what
the best method is. Alternatives:
1. Do the sound folding on the fly when looking for suggestions. This means
walking through the trie of good words, soundfolding each word and
checking how different it is from the bad word. This is very efficient for
memory use, but takes a long time. On a fast PC it takes a couple of
seconds for English, which can be acceptable for interactive use. But for
some languages it takes more than ten seconds (e.g., German, Catalan),
which is unacceptable slow. For batch processing (automatic corrections)
it's to slow for all languages.
2. Use a trie for the soundfolded words, so that searching can be done just
like how it works without soundfolding. This requires remembering a list
of good words for each soundfolded word. This makes finding matches very
fast but requires quite a lot of memory, in the order of 1 to 10 Mbyte.
For some languages more than the original word list.
3. Like the second alternative, but reduce the amount of memory by using affix
compression and store only the soundfolded basic word. This is what Aspell
does. Disadvantage is that affixes need to be stripped from the bad word
before soundfolding it, which means that mistakes at the start and/or end
of the word will cause the mechanism to fail. Also, this becomes slow when
the bad word is quite different from the good word.
The choice made is to use the second mechanism and use a separate file. This
way a user with sufficient memory can get very good suggestions while a user
who is short of memory or just wants the spell checking and no suggestions
doesn't use so much memory.
Word frequency
For sorting suggestions it helps to know which words are common. In theory we
could store a word frequency with the word in the dictionary. However, this
requires storing a count per word. That degrades word tree compression a lot.
And maintaining the word frequency for all languages will be a heavy task.
Also, it would be nice to prefer words that are already in the text. This way
the words that appear in the specific text are preferred for suggestions.
What has been implemented is to count words that have been seen during
displaying. A hashtable is used to quickly find the word count. The count is
initialized from words listed in COMMON items in the affix file, so that it
also works when starting a new file.
This isn't ideal, because the longer Vim is running the higher the counts
become. But in practice it is a noticable improvement over not using the word
count.
==============================================================================
4. Assumptions *design-assumptions*
Size of variables:
char 8 bit signed
char_u 8 bit unsigned
int 16, 32 or 64 bit signed
unsigned 16, 32 or 64 bit unsigned
int 32 or 64 bit signed (16 might be possible with limited features)
unsigned 32 or 64 bit unsigned (16 as with ints)
long 32 or 64 bit signed, can hold a pointer
Note that some compilers cannot handle long lines or strings. The C89