Initial commit of a word-based password generator.
The diceware algorithm is a password generation algorithm where users roll dice several times (around 7) to generate a random number. This random number is then used to index into a word list and select a word. This process is repeated until between 3 and 12 words are selected. With dozens to hundreds of dice rolls, this can get very tedious. The passgen program performs this work in C++. It uses the /dev/urandom device on all modern UNIX systems to get randomness. This randomness is used to index into a word list. It uses 18 bits of randomness per word. The word list is more than 262144 words long and thus is suitable for this use. Before running a random sample of the words are discarded from the list. The list is also randomly reshuffled before beginning the process to ensure that a random selection of words are removed. The reshuffling also means that the same stream of bits from /dev/urandom will not generate the same password. It will, however, be slightly dependent upon the randomness in the pre-shuffle. This randomness does not improve the security of those passwords. Words smaller than 4 letters are also removed. 18 bits requires 3 bytes to store cleanly, and more than 3 bytes in base32 (which is kind of like what we're generating these passwords in). Thus those shorter words represent a compression -- this lowers the minimum number of bytes necessary to encode the password and reduces the search surface slightly. (The worst case would be 4 words having two letters -- 8 bytes, at 5 bits per byte is 40 bits of search space. 4 words at 18 bits per word is 72 bits of search space. You lose 32 bits of total search space there, alone!) (Note: This is a commit of the latest passgen, but using sha256 object store.)
This commit is contained in:
191
passgen.cc
Normal file
191
passgen.cc
Normal file
@ -0,0 +1,191 @@
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <vector>
|
||||
#include <iterator>
|
||||
#include <algorithm>
|
||||
#include <string>
|
||||
#include <exception>
|
||||
#include <stdexcept>
|
||||
#include <random>
|
||||
#include <cstdint>
|
||||
#include <cctype>
|
||||
#include <cstdlib>
|
||||
#include <cstddef>
|
||||
#include <climits>
|
||||
#include <cassert>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
|
||||
#undef BITS
|
||||
#undef DOMAIN
|
||||
#undef SKIP
|
||||
#undef DOIT
|
||||
#undef DEBUG
|
||||
|
||||
#define DEBUG SKIP
|
||||
#define DOIT if( true )
|
||||
#define SKIP if( false )
|
||||
|
||||
using std::begin;
|
||||
using std::end;
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace C
|
||||
{
|
||||
const std::uint64_t bits= 18;
|
||||
const std::uint64_t domain= 1 << C::bits;
|
||||
}
|
||||
|
||||
class Failure : public std::runtime_error
|
||||
{
|
||||
public:
|
||||
explicit Failure() : std::runtime_error( "Failure" ) {}
|
||||
explicit Failure( const std::string &s ) : std::runtime_error( "Failure: " + s ) {}
|
||||
};
|
||||
|
||||
auto
|
||||
openRandom()
|
||||
{
|
||||
std::ifstream r( "/dev/urandom" );
|
||||
if( r.bad() || r.fail() ) throw Failure();
|
||||
|
||||
return r;
|
||||
};
|
||||
|
||||
template< typename T >
|
||||
class safe_vector : public std::vector< T >
|
||||
{
|
||||
public:
|
||||
using std::vector< T >::vector;
|
||||
template< typename Idx >
|
||||
auto operator []( const Idx &i ) const { return this->at( i ); }
|
||||
|
||||
template< typename Idx >
|
||||
auto operator []( const Idx &i ) { return this->at( i ); }
|
||||
};
|
||||
|
||||
void
|
||||
dictStat( const std::vector< std::string > &d )
|
||||
{
|
||||
std::cout << "Dictionary statistics: " << std::endl;
|
||||
for( int i= 1; i < 25; ++i )
|
||||
{
|
||||
std::cout << i << " character words: ";
|
||||
std::cout << std::count_if( begin( d ), end( d ), [i]( auto &&s ) { return s.size() == i; } );
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
auto
|
||||
getDictionary()
|
||||
{
|
||||
std::ifstream d( "dictionary" );
|
||||
if( d.bad() || d.fail() ) throw Failure();
|
||||
|
||||
// We assume that the dictionary is unique -- it reduces load time.
|
||||
using input_type= std::istream_iterator< std::string >;
|
||||
safe_vector< std::string > dict{ input_type{ d }, input_type{} };
|
||||
|
||||
// dictStat( dict );
|
||||
|
||||
// Remove words which are really small from the dictionary -- it makes for
|
||||
// somewhat slightly kinda sorta easier to crack passwords:
|
||||
//
|
||||
// Consider: each 1 or 2 letter word really is one or 2 bytes or 8 to 16 bits.
|
||||
// If we get a bad roll, such that there are maybe three such words, we have
|
||||
// 3 * 18 in our randomness pool -- good (54 bits of randomness), but it is
|
||||
// encoded in a form which will be covered by a brute-force crack of a much
|
||||
// smaller space. Because short words are REALLY easy to remember, people may
|
||||
// bias their runs to select shorter words. We need to prevent creating passwords
|
||||
// which can be in a (partial) collision space of a 2**64 brute-force character
|
||||
// search.
|
||||
//
|
||||
// Thus, 'a big dog in my car' is 6 words (and gives us 6 * 18 or 108 bits),
|
||||
// it's 18-characters, and thus really more like 18 base-32 or weaker coding
|
||||
// tokens -- in such a degenerate case, we still have like 90 bits, but people
|
||||
// may not even take 6 words: 'in my up on' is 11 characters, or maybe like 55
|
||||
// bits in base32 (being still generous). Although it was made from 18-bit
|
||||
// random tokens (and thus really represents a 72 bit secret), its encoding is
|
||||
// in a 5-bit space, and thus not very secure. A dumb-brute-force attacker
|
||||
// will do 2**88 possible total combinations, but a smart attacker will prioritize
|
||||
// the base32 and base64 space, thus shaving 22 or 33 bits off of that space.
|
||||
//
|
||||
// So to help ensure that a word representing 18-bits is encoded by MORE than
|
||||
// 15 possible bits of a base32, we cut out 1 and 2 character words. For more safety,
|
||||
// bringing this to 4 is better. (Granted that there are only 26 one-letter words,
|
||||
// and about 600 two-letter words, total, people will be selective in the passwords
|
||||
// that they keep from this program and attempt to memorize. If we cut out the
|
||||
// possibility of hard passwords, we save pain in explaining good designs.
|
||||
DOIT dict.erase( std::remove_if( begin( dict ), end( dict ),
|
||||
[]( const auto &x ){ return x.size() < 4; } ), end( dict ) );
|
||||
|
||||
// We shuffle before trim so that we aren't quite sure which words get thrown out.
|
||||
std::random_device rd;
|
||||
std::mt19937 gen( rd() );
|
||||
std::shuffle( begin( dict ), end( dict ), gen );
|
||||
|
||||
// Make sure that we can reach the expected domain, and trim to that domain.
|
||||
if( ( C::domain ) > dict.size() )
|
||||
throw Failure( "Dict size: " + boost::lexical_cast< std::string >( dict.size() ) );
|
||||
dict.resize( C::domain );
|
||||
|
||||
return dict;
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
main( const int argcnt, const char *const *const argvec )
|
||||
try
|
||||
{
|
||||
const auto dict= getDictionary();
|
||||
|
||||
auto rnd= openRandom();
|
||||
|
||||
const auto bitsDesired = ( argcnt == 1 ) ? 64 : boost::lexical_cast< int >( argvec[ 1 ] );
|
||||
|
||||
std::cout << "We are going to make a password at least as strong as a "
|
||||
<< bitsDesired << " bit secret" << std::endl;
|
||||
|
||||
uint64_t randomness;
|
||||
int bits= 0;
|
||||
int bitsInRnd= 0;
|
||||
std::vector< std::string > words;
|
||||
|
||||
do
|
||||
{
|
||||
if( bitsInRnd < C::bits )
|
||||
{
|
||||
rnd.read( reinterpret_cast< char * >( &randomness ), sizeof( randomness ) );
|
||||
if( rnd.bad() || rnd.fail() || rnd.eof() ) throw Failure();
|
||||
bitsInRnd= sizeof( randomness ) * CHAR_BIT;
|
||||
}
|
||||
|
||||
const auto &word= dict[ randomness % ( C::domain ) ];
|
||||
DEBUG std::cout << randomness % ( C::domain ) << std::endl;
|
||||
DEBUG std::cout << word << std::endl;
|
||||
randomness>>= C::bits;
|
||||
words.push_back( word );
|
||||
|
||||
bitsInRnd-= C::bits;
|
||||
bits+= C::bits;
|
||||
}
|
||||
while( bits < bitsDesired );
|
||||
|
||||
std::ostringstream pws;
|
||||
std::copy( begin( words ), end( words ), std::ostream_iterator< std::string >( pws, " " ) );
|
||||
const std::string password= pws.str();
|
||||
std::cout << "[32m" << password << "[0m" << std::endl;
|
||||
std::cout << "Your password has " << words.size() << " words in its makeup." << std::endl;
|
||||
std::cout << "Your password has " << bits << " bits of entropy in its makeup." << std::endl;
|
||||
|
||||
std::cout << "Your password is roughly equivalent to " << password.size() << " base32 elements" << std::endl;
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
catch( const std::exception &ex )
|
||||
{
|
||||
std::cerr << "Error: " << ex.what() << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
Reference in New Issue
Block a user