1
0
forked from Alepha/Alepha
Files
Alepha/Mockination/MockMutex.h

415 lines
12 KiB
C++

static_assert( __cplusplus > 2020'99 );
#pragma once
#include <Alepha/Alepha.h>
#include <cassert>
#include <iostream>
#include <map>
#include <vector>
#include <utility>
#include <iterator>
#include <algorithm>
#include <Alepha/Truss/mutex.h>
#include <Alepha/Truss/thread.h>
#include <Alepha/Truss/condition_variable.h>
namespace Alepha
{
inline namespace Aluminum
{
namespace Mockination
{
class MockMutexImpl
{
private:
using thread_type= Alepha::Truss::thread::id;
using mutex_type= Alepha::Truss::mutex;
using lock_type= Alepha::Truss::unique_lock< mutex_type >;
using condition_type= Alepha::Truss::condition_variable;
static inline thread_type
get_this_thread()
{
return Alepha::Truss::this_thread::get_id();
}
class Waiter
{
private:
MockMutexImpl *const this_;
condition_type condition;
inline Waiter( const Waiter & )= delete;
inline Waiter &operator= ( const Waiter & )= delete;
public:
inline
~Waiter()
{
this->this_->waiters.erase( get_this_thread() );
}
explicit inline
Waiter( MockMutexImpl *const i_t, const lock_type & )
: this_( i_t )
{
this->this_->waiters[ get_this_thread() ]= this;
}
void
wait( lock_type &lock )
{
this->condition.wait( lock );
}
void
unblock( lock_type &lock )
{
this->condition.notify_all();
}
};
mutable mutex_type internal_mutex;
mutable mutex_type access;
mutable std::map< thread_type, Waiter * > waiters;
mutable condition_type lockReleased;
mutable bool unlockWaiterReady= false;
mutable condition_type lockWaited;
mutable condition_type lockEntered;
mutable condition_type waiterAvailable;
thread_type holder_;
std::exception_ptr interruption;
private: // Internal impls, unlocked
inline lock_type
lockAccess() const
{
return lock_type{ this->access };
}
inline bool
locked( const lock_type & ) const
{
return this->holder_ != thread_type{};
}
inline thread_type
holder( const lock_type & ) const
{
return this->holder_;
}
inline void
waitLocked( lock_type &lock ) const
{
this->lockEntered.wait( lock, [this, &lock] { return this->locked( lock ); } );
}
inline void waitLocked( lock_type &&lock ) const { this->waitLocked( lock ); }
inline void
waitUnlocked( lock_type &lock ) const
{
this->unlockWaiterReady= true;
this->lockWaited.notify_all();
this->lockReleased.wait( lock, [this, &lock]{ return !this->locked( lock ); } );
}
inline void waitUnlocked( lock_type &&lock ) const { this->waitUnlocked( lock ); }
void
allowFirst( lock_type &lock )
{
assert( !this->waiters.empty() );
this->waiters.begin()->second->unblock( lock );
}
void allowFirst( lock_type &&lock ) { this->allowFirst( lock ); }
void
allow( const thread_type next, lock_type &lock )
{
assert( !this->waiters.empty() );
const auto found= this->waiters.find( next );
assert( found != this->waiters.end() );
found->second->unblock( lock );
}
void
allow( const thread_type next, lock_type &&lock )
{
this->allow( next, lock );
}
public:
inline ~MockMutexImpl()= default;
explicit inline MockMutexImpl( const MockMutexImpl & )= delete;
inline MockMutexImpl &operator= ( const MockMutexImpl & )= delete;
explicit inline MockMutexImpl( MockMutexImpl && )= delete;
inline MockMutexImpl &operator= ( MockMutexImpl && )= delete;
explicit inline MockMutexImpl()= default;
// TODO: Consider breaking this part of the API out into a management handle
// object that can be used to avoid having client threads work with the management
// interface
/*!
* @brief Returns an observation of the waiting state.
* @returns A list of the number of threads
* @note That the returned value may become out of date, as soon as consumed.
*/
inline std::vector< thread_type >
getWaiters() const
{
lock_type lock( this->access );
std::vector< thread_type > rv;
rv.reserve( this->waiters.size() );
std::transform( begin( this->waiters ), end( this->waiters ),
back_inserter( rv ), []( const auto &w ) { return w.first; } );
return rv;
}
inline void
waitForWaiter( const thread_type waiter ) const
{
lock_type lock( this->access );
waiterAvailable.wait( lock, [this, waiter]
{ return this->waiters.find( waiter ) != end( this->waiters ); } );
}
/*!
* @brief Returns an observation of the waiting state.
* @returns The number of threads waiting for entry to the lock.
* @note That the returned value may become out of date, as soon as consumed.
*/
inline bool
hasWaiters() const
{
lock_type lock( this->access );
return !this->waiters.empty();
}
/*!
* @brief Returns an observation of the locked-state.
* @returns True if the lock is in the locked state.
* @returns False if the lock is not in the locked state.
*/
inline bool locked() const { return this->locked( lock_type{ this->access } ); }
/*!
* @brief Returns an observation of the current holder of the lock.
* @returns The `Alepha::Truss::thread::id` of the thread holding the lock.
* @note A default constructed thread-id indicates no current holder.
*/
inline thread_type holder() const { return this->holder( this->lockAccess() ); }
/*!
* @brief Blocks the caller until the lock transitions to the locked state.
* @pre The lock has been previously pumped with a request to transition a
* waiter into the lock-held state.
* @post The most recently requested waiter to enter the lock will transition into
* the lock-held state.
*/
void waitLocked() const { this->waitLocked( this->lockAccess() ); }
/*!
* @brief Blocks the caller until the lock transitions to the unlocked state.
* @pre The lock was previously pumped with a request to transition a
* waiter into the lock-held state. (The lock is in the locked or
* indeterminate state.)
* @post The most recently requested waiter will have completed its critical
* section.
*/
void waitUnlocked() const { this->waitUnlocked( this->lockAccess() ); }
/*!
* @brief Pumps the first waiter in the internal wait list to transition to the
* locked state.
* @pre The lock is in the unlocked state.
* @post The lock is in an indeterminate state.
* @note A call to `waitUnlocked` must be made before a subsequent call to
* `allowFirst` or `allow` can be made -- otherwise the lock is in an
* indeterminate state.
* @note The "first waiter" is an unspecified waiting thread, and not necessarily
* the longest waiting thread -- threads are not pumped in "fifo" order by
* this operation.
*/
void allowFirst() { this->allowFirst( this->lockAccess() ); }
/*!
* @brief Pumps the first waiter in the internal wait list to transition to the
* locked state.
* @pre The lock is in the unlocked state.
* @invariant A single thread will enter the lock, and then release it.
* @post The lock has returned to the unlocked state, after a single thread entered.
* @note `allowFirstWait` can be called multiple times in succession without
* intervening calls.
* @note The "first waiter" is an unspecified waiting thread, and not necessarily
* the longest waiting thread -- threads are not pumped in "fifo" order by
* this operation.
*/
void
allowFirstWait()
{
lock_type lock( this->access );
this->allowFirst( lock );
this->waitLocked( lock );
this->waitUnlocked( lock );
}
/*!
* @brief Pumps the specified waiter in the internal wait list to transition to the
* locked state.
* @param next The thread to permit into the lock next.
* @pre The lock is in the unlocked state.
* @post The lock is in an indeterminate state.
* @note A call to `waitUnlocked` must be made before a subsequent call to
* `allowFirst` or `allow` can be made -- otherwise the lock is in an
* indeterminate state.
*/
void
allow( const thread_type next )
{
this->allow( next, lock_type{ this->access } );
}
/*!
* @brief Pumps the specified waiter in the internal wait list to transition to the
* locked state.
* @param next The thread to permit into the lock next.
* @pre The lock is in the unlocked state.
* @invariant A single, specified thread will enter the lock, and then release it.
* @post The lock has returned to the unlocked state, after the specified thread
* entered.
* @note `allowWait` can be called multiple times in succession without
* intervening calls.
*/
void
allowWait( const thread_type next )
{
lock_type lock( this->access );
this->allow( next, lock );
this->waitLocked( lock );
assert( this->holder( lock ) == next );
this->waitUnlocked( lock );
}
#if 0
template< typename Exception >
void
interruptFirst( Exception exc )
{
lock_type lock( this->access );
assert( !this->waiters.empty() );
this->interruption= std::make_exception_ptr( std::move( exc ) );
this->waiters.begin()->second->unblock( lock );
}
template< typename Exception >
void
interrupt( const thread_type next, Exception exc )
{
lock_type lock( this->access );
const auto found= this->waiters.find( next );
assert( found != this->waiters.end() );
this->interruption= std::make_exception_ptr( std::move( exc ) );
found->second->unblock( lock );
}
#endif
// Mutex interface:
/*!
* @brief Attempt to assert the lock.
* @pre The current thread does NOT hold the lock.
* @post The lock is in the locked state and `Alepha::Truss::this_thread::get_id()`
* is registered as the current holder of this thread.
*/
inline void
lock()
{
lock_type lock( this->access );
assert( this->holder_ != get_this_thread() );
// Waiter needs to stick around until exiting this function -- it indicates
// an actual waiting state. Exiting this function removes that state.
Waiter waiter( this, lock );
waiterAvailable.notify_all(); // unblock anyone waiting for new waiters.
waiter.wait( lock );
if( this->interruption )
{
auto interrupt= this->interruption;
this->interruption= nullptr;
std::rethrow_exception( interrupt );
}
this->holder_= get_this_thread();
this->lockEntered.notify_all();
this->internal_mutex.lock();
}
/*!
* @brief Release control over this lock.
* @pre The current thread holds the lock.
* @post The lock transitions to the unlocked state and this thread is deregistered
* as the current holder of this thread.
*
* @note Threads do not actually release the lock until permitted to do so by
* a `waitUnlocked` operation from an external thread, or if the thread
* entered this lock by means of an `allowWait` or `allowFirstWait`
* operation.
*/
// Unlocking is techincally a thread synchronization point, but we will
// crash the program at present, since it gets called from destructors.
// TODO: Use a universal interrupt block here.
inline void
unlock() noexcept
{
lock_type lock( this->access );
assert( this->holder_ == get_this_thread() );
this->internal_mutex.unlock();
while( !this->unlockWaiterReady )
{
this->lockWaited.wait( lock );
}
this->unlockWaiterReady= false;
this->holder_= {};
this->lockReleased.notify_all();
}
};
template< int id >
class MockMutex
{
public:
static MockMutexImpl impl;
inline void
unlock() noexcept
{
impl.unlock();
}
inline void
lock() noexcept
{
impl.lock();
}
};
template< int id > MockMutexImpl MockMutex< id >::impl;
}
}
}