1
0
forked from Alepha/Alepha

Partially on the way to complete 17 reflection.

I can't figure out why my computation on empty bases is 1 higher
than it should be -- so I'm punting, for now.  I'll revisit it
when I have more time.
This commit is contained in:
2021-10-26 05:04:25 -04:00
parent 304640d76b
commit 7b7e8a1b67
6 changed files with 478 additions and 0 deletions

View File

@ -0,0 +1,72 @@
static_assert( __cplusplus > 201700, "C++17 Required" );
#pragma once
#include <Alepha/Alepha.h>
#include <tuple>
#include <utility>
#include <type_traits>
#include <Alepha/Reflection/detail/config.h>
namespace Alepha::Hydrogen::Reflection
{
inline namespace exports { inline namespace aggregate_initialization {} }
namespace detail::aggregate_initialization
{
inline namespace exports {}
// Basic methodology here: I probe the number of arguments that an object can be constructed with. I don't
// care what they actually are, as there's no easy way to hoist out what they are. However, for an aggregate,
// the largest number of items one can initialize it with is related to the number of items that it contains.
// Therefore as long as the inspection is performed on aggregates and yields the maximum number it finds, then
// it will always yield a valid initialization pack count. Other information is then used to winnow that
// down to arrive at a member count.
// The basic adaptable argument. Because it pretends to be anything, it can be used as a parameter in invoking
// any initialization method.
struct argument
{
template< typename T > constexpr operator T ();
};
// The first step is to just start it all off with a blank sequence and walk forward from there.
// The default arguments cause it to start with the blank sequence, even if it doesn't match this
// case in the specialization selection.
template< typename T, typename seq= std::index_sequence<>, typename= void, typename= std::enable_if_t< std::is_aggregate_v< T > > >
struct init_count_impl
// When this base case is reached, the size of the sequence is the argument count.
: std::integral_constant< std::size_t, seq::size() > {};
// This expansion case always matches when an initializer of the number of elements in the sequence is syntactically
// valid. It also recurses, thus exploring the whole initializer set. There is have one fewer value in the sequence set
// than we use to initialize so that when SFINAE gives up, it defers to the base case above, thus having the right
// count.
template< typename T, std::size_t ... values >
struct init_count_impl
<
T,
std::index_sequence< values... >,
std::void_t< decltype( T{ ( values, std::declval< argument >() )..., std::declval< argument >() } ) >,
void
>
// Descend and take the next element in the sequence.
: init_count_impl< T, std::index_sequence< values..., sizeof...( values ) > > {};
namespace exports
{
template< typename T >
constexpr std::size_t aggregate_initializer_size_v= init_count_impl< T >::value;
template< typename T >
using aggregate_initializer_size= typename init_count_impl< T >::type;
}
}
namespace exports::aggregate_initialization
{
using namespace detail::aggregate_initialization::exports;
}
}

View File

@ -0,0 +1,135 @@
static_assert( __cplusplus > 201700, "C++17 Required" );
#pragma once
#include <Alepha/Alepha.h>
#include <tuple>
#include <utility>
#include <type_traits>
#include <Alepha/Reflection/detail/config.h>
#include <Alepha/Reflection/aggregate_initialization.h>
#include <Alepha/Meta/overload.h>
namespace Alepha::Hydrogen::Reflection
{
inline namespace exports { inline namespace aggregate_members {} }
namespace detail::aggregate_members
{
inline namespace exports {}
using Meta::overload;
// Basic methodology here: The number of members in an aggregate is equal to the number of initializer parameters
// it takes less the number of empty base classes it has.
// The basic adaptable argument. Because it pretends to be anything, it can be used as a parameter in invoking
// any initialization method.
struct argument { template< typename T > constexpr operator T (); };
template< typename T >
struct checker
{
using type= typename checker< T >::type;
//using type= void;
//static_assert( std::is_empty_v< T > );
};
// Any empty-base-class argument.
template< typename Aggregate >
struct empty_base
{
template
<
typename T,
//typename= typename checker< std::decay_t< T > >::type,
typename= std::enable_if_t< std::is_empty_v< std::decay_t< T > > >,
typename= std::enable_if_t< not std::is_same_v< std::decay_t< T >, Aggregate > >,
typename= std::enable_if_t< std::is_base_of_v< std::decay_t< T >, Aggregate > >,
overload< __LINE__ > = nullptr
>
constexpr operator T ();
//template< typename T > constexpr operator T ()= delete;
};
template< typename Tuple, std::size_t baseCount, std::size_t totalCount >
constexpr void
check_tuple()
{
static_assert( std::tuple_size_v< Tuple > == totalCount );
}
template< typename Aggregate, std::size_t bases, std::size_t total >
constexpr auto
build_init_tuple()
{
static_assert( bases <= total );
if constexpr( total == 0 ) return std::tuple{};
else if constexpr( bases > 0 )
{
auto result= std::tuple_cat( std::tuple{ empty_base< Aggregate >{} }, build_init_tuple< Aggregate, bases - 1, total - 1 >() );
check_tuple< decltype( result ), bases, total >();
return result;
}
else
{
static_assert( bases == 0 );
auto result= std::tuple_cat( std::tuple{ argument{} }, build_init_tuple< Aggregate, 0, total - 1 >() );
check_tuple< decltype( result ), bases, total >();
return result;
}
}
template< typename T, typename Tuple, typename= void >
struct is_constructible_from_tuple : std::false_type {};
template< typename T, typename ... TupleArgs >
struct is_constructible_from_tuple
<
T,
std::tuple< TupleArgs... >,
std::void_t< decltype( T{ std::declval< TupleArgs >()... } ) >
>
: std::true_type {};
template< typename T, typename Tuple >
constexpr bool is_constructible_from_tuple_v= is_constructible_from_tuple< T, Tuple >::value;
template< typename T, std::size_t index= 0, typename= std::enable_if_t< std::is_aggregate_v< T > > >
constexpr std::size_t
count_empty_bases()
{
constexpr auto init_size= aggregate_initializer_size_v< T >;
if constexpr( is_constructible_from_tuple_v< T, decltype( build_init_tuple< T, index, init_size >() ) > )
{
return 1 + count_empty_bases< T, index + 1 >();
}
else return 0;
}
namespace exports
{
template< typename T >
struct aggregate_empty_bases : std::integral_constant< std::size_t, count_empty_bases< T >() - 1 > {};
template< typename T >
constexpr std::size_t aggregate_empty_bases_v= aggregate_empty_bases< T >::value;
template< typename T >
constexpr std::size_t aggregate_member_count_v= aggregate_initializer_size_v< T > - aggregate_empty_bases_v< T >;
template< typename T >
struct aggregate_member_count : std::integral_constant< std::size_t, aggregate_member_count_v< T > > {};
}
}
namespace exports::aggregate_members
{
using namespace detail::aggregate_members::exports;
}
}

View File

@ -0,0 +1,8 @@
static_assert( __cplusplus > 201700, "C++17 Required" );
#pragma once
#include <Alepha/Alepha.h>
// This file will eventually contain all of the constants that control how much generated code the
// C++17 Reflection system will geeerate.

View File

@ -0,0 +1,182 @@
static_assert( __cplusplus > 201700, "C++17 Required" );
#pragma once
#include <Alepha/Alepha.h>
#include <boost/preprocessor.hpp>
#include <Alepha/Reflection/detail/config.h>
#include <Alepha/Reflection/aggregate_members.h>
namespace Alepha::Hydrogen::Reflection
{
inline namespace exports { inline namespace tuplize_aggregate {} }
namespace detail::tuplize_aggregate
{
inline namespace exports
{
/*!
* Deconstruct an aggregate object into a tie-based tuple pointing at its members.
*
* C++17's primary new reflection-oriented introduction is Structured Binding Declarations.
* What these let one do is to introduce a set of named variables that bind to each member
* of a (raw aggregate) `struct` in turn. This leads to some very interesting forms of
* "reflection" about what a user defined type is made of. Combined with the `std::is_aggregate`
* trait function and a way to determine the number of member objects, this provides a
* powerful new way to inspect any type.
*
* Structured Binding Declarations can also be used with arrays or types which implement a subset
* of the `std::tuple` interface. Those cases are not as interesting. We've always had the
* ability to inspect arrays via templates -- simple deduction operations work for that. And
* C++11's `std::tuple`s are already inspectable by their nature and types which implement a tuple-like
* interface are also easily inspected by pre-C++17 means.
*
* The most important thing C++17 Structured Binding brings to the language is the ability to
* (at compiletime) programmatically inspect any structure's members -- to learn their types,
* and with a bit of special effort, to learn their offsets. The names of those members are
* hidden, but their types are available, as is a way to work with all of them at once. Any
* Structured Binding is sufficient to do this -- one need only give a new name for each member of
* the type. `auto &[ a, b, c, d ]= someStruct;` is all that is needed and one has already performed
* an interesting feat of rudimentary reflection on the type `someStruct`. By loading those values
* into a tuple (by reference), by code such as `std::tie( a, b, c, d )`, a programmer can provide
* an anonymized, distilled reflection of the contents of that `struct`. This said, a library function
* which can decompose any `struct` into such a tie is very useful. `tuplizeAggregate` is exactly this.
*
* This function contains a pre-built set of such decompositions for structs of various sizes. C++17
* does not permit arbitrarily sized Structured Bindings, and so a limit had to be placed. The limit
* is fairly generous, however. If an aggregate size which is greater than the pre-build maximum is
* provided, then the compile will fail on a `static_assert` indicating this.
*
* Unfortunately, as a declaration syntax, the number of members in a `struct`'s body cannot be inferred
* through SFINAE by this means. Normally the user must explicitly provide the number of member
* variables. However, combined with a pair of C++11 features (based upon variadic templates and
* aggregate initialization syntax) we can infer the number of memmber values via a set of helper
* templates (which can also be called directly.)
*
* This kind of reflection into an aggregate type can prove very useful. Code generators for
* serialization, conversion tools, universal utility functions, and much more can all be built in
* C++17, today, using this kind of reflection! There's no need to wait for C++23 or beyond when
* static reflection is added to the language. A great deal of desired reflection use cases can be
* attained today. One just need write some code generators in terms of `std::tuple` and `std::tie`,
* then make any overloads (perhaps using ADL hooking tricks) which call `Alepha::Reflection::tuplizeAggregate`
* and pass that result to the general tuple form. For serializers and such, other techniques such as
* `boost::core::demangle( typeid( instance ).name() )` can be used to get nice names for types when
* implementing universal serializers. In fact, this can be used as a crutch for serializing more
* complicated user types (with private data and such). Those types can produce an aggregate "view"
* of what they must serialize or deserialize, and then they can hand that view off to such code
* generators. And, of cousre, this need not apply just to serialization.
*
* @param agg Aggregate instance to decompose into a `std::tie` based `std::tuple`.
* @tparam aggregate_size The number of members in the aggregate argument `agg`'s definition.
* @tparam Aggregate The type of the aggregate to decompose.
*/
// TODO: Make `aggregate_size` deduced via `Reflection::aggregate_ctor...` means.
template< std::size_t aggregate_size, typename Aggregate, typename= std::enable_if_t< not std::is_rvalue_reference_v< Aggregate > > >
constexpr decltype( auto )
tuplizeAggregate( Aggregate &&agg )
{
static_assert( std::is_aggregate_v< std::decay_t< Aggregate > >, "`tuplizeAggregate` only can be used on aggregates" );
// TODO: Generate these cases via boost preprocessor, to cut down on repetition...
if constexpr( aggregate_size == 0 ) return std::tuple{};
else if constexpr( aggregate_size == 1 )
{
auto &[ a0 ]= agg;
return std::tie( a0 );
}
else if constexpr( aggregate_size == 2 )
{
auto &[ a0, a1 ]= agg;
return std::tie( a0, a1 );
}
else if constexpr( aggregate_size == 3 )
{
auto &[ a0, a1, a2 ]= agg;
return std::tie( a0, a1, a2 );
}
else if constexpr( aggregate_size == 4 )
{
auto &[ a0, a1, a2, a3 ]= agg;
return std::tie( a0, a1, a2, a3 );
}
else if constexpr( aggregate_size == 5 )
{
auto &[ a0, a1, a2, a3, a4 ]= agg;
return std::tie( a0, a1, a2, a3, a4 );
}
else if constexpr( aggregate_size == 6 )
{
auto &[ a0, a1, a2, a3, a4, a5 ]= agg;
return std::tie( a0, a1, a2, a3, a4, a5 );
}
else if constexpr( aggregate_size == 7 )
{
auto &[ a0, a1, a2, a3, a4, a5, a6 ]= agg;
return std::tie( a0, a1, a2, a3, a4, a5, a6 );
}
else if constexpr( aggregate_size == 8 )
{
auto &[ a0, a1, a2, a3, a4, a5, a6, a7 ]= agg;
return std::tie( a0, a1, a2, a3, a4, a5, a6, a7 );
}
else if constexpr( aggregate_size == 9 )
{
auto &[ a0, a1, a2, a3, a4, a5, a6, a7, a8 ]= agg;
return std::tie( a0, a1, a2, a3, a4, a5, a6, a7, a8 );
}
else if constexpr( aggregate_size == 10 )
{
auto &[ a0, a1, a2, a3, a4, a5, a6, a7, a8, a9 ]= agg;
return std::tie( a0, a1, a2, a3, a4, a5, a6, a7, a8, a9 );
}
else if constexpr( aggregate_size == 11 )
{
auto &[ a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 ]= agg;
return std::tie( a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 );
}
else if constexpr( aggregate_size == 12 )
{
auto &[ a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11 ]= agg;
return std::tie( a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11 );
}
else if constexpr( aggregate_size == 13 )
{
auto &[ a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12 ]= agg;
return std::tie( a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12 );
}
else if constexpr( aggregate_size == 14 )
{
auto &[ a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13 ]= agg;
return std::tie( a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13 );
}
else if constexpr( aggregate_size == 15 )
{
auto &[ a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14 ]= agg;
return std::tie( a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14 );
}
else if constexpr( aggregate_size == 16 )
{
auto &[ a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15 ]= agg;
return std::tie( a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15 );
}
// Impossible, in this case -- we would have taken the original 0 branch were this so.
else static_assert( aggregate_size == 0, "The specified aggregate has more members than `tuplizeAggregate` can handle" );
}
// This overload deduces the aggregate size using the initializer inspection utilities.
template< typename Aggregate >
constexpr decltype( auto )
tuplizeAggregate( Aggregate &&agg )
{
return tuplizeAggregate< aggregate_member_count_v< std::decay_t< Aggregate > > >( std::forward< Aggregate >( agg ) );
}
}
}
namespace exports::tuplize_aggregate
{
using namespace detail::tuplize_aggregate::exports;
}
}

View File

@ -0,0 +1,77 @@
static_assert( __cplusplus > 201700, "C++17 Required" );
#include <Alepha/Reflection/tuplizeAggregate.h>
#include <Alepha/Testing/test.h>
#include <Alepha/types.h>
#include <Alepha/Meta/product_type_decay.h>
using Alepha::argcnt_t, Alepha::argvec_t;
int
main( const argcnt_t argcnt, const argvec_t argvec )
{
return Alepha::Testing::runAllTests( argcnt, argvec );
}
namespace
{
using namespace Alepha::Testing::literals;
struct instance
{
int a;
float b;
char c;
double d;
};
static_assert( std::tuple_size_v< decltype( Alepha::Reflection::tuplizeAggregate( std::declval< instance >() ) ) > == 4 );
static_assert( Alepha::Reflection::aggregate_empty_bases_v< instance > == 0 );
static_assert( std::is_same_v
<
Alepha::Meta::product_type_decay_t< decltype( Alepha::Reflection::tuplizeAggregate( std::declval< instance >() ) ) >,
std::tuple< int, float, char, double >
> );
struct instance2 : instance
{
int a;
float b;
char c;
double d;
};
// Apparently decomposibility is not quite the same as aggregate.
// We'll need a way to do this right?
//static_assert( not std::is_aggregate_v< instance2 > );
struct empty1 {};
struct empty2 {};
struct empty3 {};
struct instance3 : empty1, empty2
{
empty3 e;
int a;
float b;
char c;
double d;
};
static_assert( Alepha::Reflection::aggregate_initializer_size_v< instance3 > == 7 );
static_assert( Alepha::Reflection::aggregate_empty_bases_v< instance3 > == 2 );
auto t= "test"_test <=[]
{
using namespace Alepha::Reflection::detail::aggregate_members;
std::cout << Alepha::Reflection::aggregate_empty_bases_v< instance3 > << std::endl;
static_assert( std::is_empty_v< empty1 > );
static_assert( is_constructible_from_tuple_v< instance3, std::tuple< empty_base< instance3 >, empty_base< instance3 > > > );
};
static_assert( std::tuple_size_v< decltype( Alepha::Reflection::tuplizeAggregate( std::declval< instance3 >() ) ) > == 5 );
static_assert( std::is_same_v
<
Alepha::Meta::product_type_decay_t< decltype( Alepha::Reflection::tuplizeAggregate( std::declval< instance3 >() ) ) >,
std::tuple< empty3, int, float, char, double >
> );
}

View File

@ -0,0 +1,4 @@
CXXFLAGS+= -std=c++17 -I .
CXXFLAGS+= -g -O0
all: 0